lunes, 7 de enero de 2019

LIMITES ESTADÍSTICOS

Son aquellas entidades numéricas utilizadas para señalar  la posición que ocupa un dato determinado, en relación con el resto de datos numéricos, permitiendo así conocer otros puntos propios de la distribución de datos, que no son inherentes a los valores centrales.



Ente los que se encuentran:
CUARTILES
Los cuartiles son los tres valores que dividen al conjunto de datos ordenados en cuatro partes porcentualmente iguales.
Hay tres cuartiles denotados usualmente Q1, Q2, Q3. El segundo cuartil es precisamente la mediana. El primer cuartil, es el valor en el cual o por debajo del cual queda un cuarto (25%) de todos los valores de la sucesión (ordenada); el tercer cuartil, es el valor en el cual o por debajo del cual quedan las tres cuartas partes (75%) de los datos.


Datos Agrupados
Como los cuartiles adquieren su mayor importancia cuando contamos un número grande de datos y tenemos en cuenta que en estos casos generalmente los datos son resumidos en una tabla de frecuencia. La fórmula para el cálculo de los cuartiles cuando se trata de datos agrupados es la siguiente:
k= 1,2,3
Donde:
Lk = Límite real inferior de la clase del cuartil k
n = Número de datos
Fk = Frecuencia acumulada de la clase que antecede a la clase del cuartil k.
fk = Frecuencia de la clase del cuartil k
c = Longitud del intervalo de la clase del cuartil k
Si se desea calcular cada cuartil individualmente, mediante otra fórmula se tiene lo siguiente:
  • El primer cuartil Q1, es el menor valor que es mayor que una cuarta parte de los datos; es decir, aquel valor de la variable que supera 25% de las observaciones y es superado por el 75% de las observaciones.
Fórmula de Q1, para series de Datos agrupados:
Donde:
L1 = limite inferior de la clase que lo contiene
P = valor que representa la posición de la medida
f1 = la frecuencia de la clase que contiene la medida solicitada.
Fa-1 = frecuencia acumulada anterior a la que contiene la medida solicitada.
Ic = intervalo de clase
  • El segundo cuartil Q2, (coincide, es idéntico o similar a la mediana, Q2 = Md), es el menor valor que es mayor que la mitad de los datos, es decir el 50% de las observaciones son mayores que la mediana y el 50% son menores.
Fórmula de Q2, para series de Datos agrupados:
Donde:
L1 = limite inferior de la clase que lo contiene
P = valor que representa la posición de la medida
f1 = la frecuencia de la clase que contiene la medida solicitada.
Fa-1 = frecuencia acumulada anterior a la que contiene la medida solicitada.
Ic = intervalo de clase
  • El tercer cuartil Q3, es el menor valor que es mayor que tres cuartas partes de los datos, es decir aquel valor de la variable que supera al 75% y es superado por el 25% de las observaciones.
Fórmula de Q3, para series de Datos agrupados:
Donde:
L1 = limite inferior de la clase que lo contiene
P = valor que representa la posición de la medida
f1 = la frecuencia de la clase que contiene la medida solicitada.
Fa-1 = frecuencia acumulada anterior a la que contiene la medida solicitada.
Ic = intervalo de clase.
Otra manera de verlo es partir de que todas las medidas no son sino casos particulares del percentil, ya que el primer cuartil es el 25% percentil y el tercer cuartil 75% percentil.
Para Datos No Agrupados
Si se tienen una serie de valores X1, X2, X3 ... Xn, se localiza mediante las siguientes fórmulas:
- El primer cuartil:
Cuando n es par:
Cuando n es impar:
  • Para el tercer cuartil
Cuando n es par:

Cuando n es impar:
DECILES
Los deciles son ciertos números que dividen la sucesión de datos ordenados en diez partes porcentualmente iguales. Son los nueve valores que dividen al conjunto de datos ordenados en diez partes iguales, son también un caso particular de los percentiles. Los deciles se denotan D1, D2,..., D9, que se leen primer decil, segundo decil, etc.
Los deciles, al igual que los cuartiles, son ampliamente utilizados para fijar el aprovechamiento académico.


Datos Agrupados
Para datos agrupados los deciles se calculan mediante la fórmula.
k= 1,2,3,... 9
Donde:
Lk = Límite real inferior de la clase del decil k
n = Número de datos
Fk = Frecuencia acumulada de la clase que antecede a la clase del decil k.
fk = Frecuencia de la clase del decil k
c = Longitud del intervalo de la clase del decil k
Otra fórmula para calcular los deciles:
  • El cuarto decil, es aquel valor de la variable que supera al 40%, de las observaciones y es superado por el 60% de las observaciones.
  • El quinto decil corresponde a la mediana.
  • El noveno decil supera al 90% y es superado por el 10% restante.
Donde (para todos):
L1 = limite inferior de la clase que lo contiene
P = valor que representa la posición de la medida
f1 = la frecuencia de la clase que contiene la medida solicitada.
Fa-1 = frecuencia acumulada anterior a la que contiene la medida solicitada.
Ic = intervalo de clase.
Fórmulas Datos No Agrupados
Si se tienen una serie de valores X1, X2, X3 ... Xn, se localiza mediante las siguientes fórmulas:
 Cuando n es par:
 Cuando n es impar:
Siendo A el número del decil.
CENTILES O PERCENTILES
Los percentiles son, tal vez, las medidas más utilizadas para propósitos de ubicación o clasificación de las personas cuando atienden características tales como peso, estatura, etc.
Los percentiles son ciertos números que dividen la sucesión de datos ordenados en cien partes porcentualmente iguales. Estos son los 99 valores que dividen en cien partes iguales el conjunto de datos ordenados. Los percentiles (P1, P2,... P99), leídos primer percentil,..., percentil 99.


Datos Agrupados
Cuando los datos están agrupados en una tabla de frecuencias, se calculan mediante la fórmula:
k= 1,2,3,... 99
Donde:
Lk = Límite real inferior de la clase del decil k
n = Número de datos
Fk = Frecuencia acumulada de la clase que antecede a la clase del decil k.
fk = Frecuencia de la clase del decil k
c = Longitud del intervalo de la clase del decil k
Otra forma para calcular los percentiles es:
  • Primer percentil, que supera al uno por ciento de los valores y es superado por el noventa y nueve por ciento restante.
  • El 60 percentil, es aquel valor de la variable que supera al 60% de las observaciones y es superado por el 40% de las observaciones.
  • El percentil 99 supera 99% de los datos y es superado a su vez por el 1% restante.
Fórmulas Datos No Agrupados
Si se tienen una serie de valores X1, X2, X3 ... Xn, se localiza mediante las siguientes fórmulas:
Para los percentiles, cuando n es par:
Cuando n es impar:
Siendo A, el número del percentil.
Es fácil ver que el primer cuartil coincide con el percentil 25; el segundo cuartil con el percentil 50 y el tercer cuartil con el percentil 75.
3. EJEMPLO
Determinación del primer cuartil, el séptimo decil y el 30 percentil, de la siguiente tabla:
Salarios
No. De
fa
(I. De Clases)
Empleados (f1)
200-299
85
85
300-299
90
175
400-499
120
295
500-599
70
365
600-699
62
427
700-800
36
463
Como son datos agrupados, se utiliza la fórmula
Siendo,
 La posición del primer cuartil.
La posición del 7 decil.
La posición del percentil 30.
Entonces,
El primer cuartil:
115.5 – 85 = 30.75
Li = 300, Ic = 100 , fi = 90
El 7 decil:
Posición:
324.1 – 295 = 29.1
Li = 500, fi = 70
El percentil 30
Posición:
138.9 – 85 = 53.9
fi = 90

Estos resultados nos indican que el 25% de los empleados ganan salarios por debajo de $ 334; que bajo 541.57 gana el 57%de los empleados y sobre $359.88, gana el 70% de los empleados.
BIBLIOGRAFIA:
https://www.monografias.com/trabajos27/datos-agrupados/datos-agrupados.shtml
https://ekuatio.com/apuntes-de-matematicas/estadistica-probabilidad/conceptos-basicos-de-estadistica-ejemplos/
https://es.slideshare.net/AXELALEXIZ/estadistica-sumatoriamtcymd

MEDIDAS DE DISPERSIÓN PARA DATOS SIMPLES Y AGRUPADOS

Las medidas de dispersión nos permiten conocer si los valores en general están cerca o alejados de los valores centrales, muestran la variabilidad de una distribución de datos, indicando por medio de un número si las diferentes puntuaciones de una variable están muy alejadas de la medida de tendencia central.







RANGO

Es la diferencia entre el valor máximo y el mínimo en nuestros datos, esta medida de dispersión aunque es la más fácil de obtener, en lo general es muy poco usada. 



Datos agrupados Hay dos formas para determinar el rango para datos agrupados:

1) Rango = punto medio de la clase más alta – punto medio de la más baja

2) Rango = límite superior de la clase más alta – límite inferior de la más baja.

EJEMPLO:
En {4, 6, 9, 3, 7} el menor valor es 3, y el mayor es 9, entonces el rango es 9-3 igual a 6.

Rango puede significar también todos los valores de resultado de una función. 
image



DESVIACIÓN MEDIA
La desviación media o desviación promedio es abreviada por MD. Mide la desviación promedio de valores con respecto a la media del grupo, sin tomar en cuenta el signo de la desviación.
EJEMPLO:
medidas de dispersion para datos agrupados ejercicios resueltos

Vamos a utilizar tablas, ya que así el procedimiento para calcular la desviación media te sirve para cuando tengas muchos datos y para cuando tengas pocos.
En primer lugar, ordenamos los datos en una tabla con la frecuencia absoluta de cada uno de ellos, dejando la última fila para la suma total de elementos de datos:
desviacion media y rango como medidas de dispersion
Vamos a empezar calculando la media, ya que la necesitamos para obtener las desviaciones. Añadimos una tercera columna para escribir el resultado de multiplicar cada dato por su frecuencia absoluta. En la última fila sumamos los resultados:
desviacion media para que sirve
Ya tenemos los datos que necesitamos para calcular la media, según la fórmula, que son la suma de las multiplicaciones de cada dato por su frecuencia absoluta y el número total de datos:
desviacion media y tipica
La suma de las multiplicaciones de los datos por la frecuencia absoluta es 25 y lo tenemos en la última fila de la tercera columna. El número total de datos es 5 y lo tenemos al final de la segunda columna:
desviacion media varianza
La media es 5.
Una vez tenemos la media, ya podemos calcular la distancia o la desviación de cada dato, como el valor absoluta de la diferencia entre cada dato con la media:
ejercicios de medidas de dispersion
Para ello, añadimos una cuarta columna donde iremos escribiendo la distancia de cada dato:
medidas de dispersión: rango, varianza y desviación típica; para datos agrupados y no agrupados
Por ejemplo, para el dato 1, la distancia sería:
problemas resueltos de medidas de dispersion
Lo hacemos igual para el resto de datos y los vamos escribiendo en la columna. En la última fila, realizamos la suma de todas las distancias:
medidas de dispersion rango y desviacion media
Ya tenemos los datos que necesitamos para calcular la desviación media, según la fórmula, que son la suma de las distancias de cada dato y el número total de datos:
medidas de dispersion varianza
La suma de las distancias es 12 y lo tenemos en la última fila de la cuarta columna. El número total de datos es 5, que lo tenemos al final de la segunda columna:
medidas de dispersion recorrido

DESVIACIÓN ESTÁNDAR
La desviación estándar o desviación típica (σ) es una medida de centralización o dispersión para variables de razón (ratio o cociente) y de intervalo, de gran utilidad en la estadística descriptiva.

Se define como la raíz cuadrada de la varianza. Junto con este valor, la desviación típica es una medida (cuadrática) que informa de la media de distancias que tienen los datos respecto de su media aritmética, expresada en las mismas unidades que la variable.
EJEMPLO:
Tú y tus amigos habéis medido las alturas de vuestros perros (en milímetros):
Las alturas (de los hombros) son: 600mm, 470mm, 170mm, 430mm y 300mm.
Calcula la media, la varianza y la desviación estándar.

Respuesta:

Media =  
600 + 470 + 170 + 430 + 300
  =  
1970
  = 394
5
5
así que la altura media es 394 mm. Vamos a dibujar esto en el gráfico:
Ahora calculamos la diferencia de cada altura con la media:
Para calcular la varianza, toma cada diferencia, elévala al cuadrado, y haz la media:
Varianza: σ2 =  
2062 + 762 + (-224)2 + 362 + (-94)2
  =  
108,520
  = 21,704
5
5
Así que la varianza es 21,704.
Y la desviación estándar es la raíz de la varianza, así que:
Desviación estándar: σ = √21,704 = 147
y lo bueno de la desviación estándar es que es útil: ahora veremos qué alturas están a distancia menos de la desviación estándar (147mm) de la media:
Así que usando la desviación estándar tenemos una manera "estándar" de saber qué es normal, o extra grande o extra pequeño.
VARIANZA 
Es una medida estadística que mide la dispersión de los valores respecto a un valor central (media), es decir, es el cuadrado de las desviaciones.






BIBLIOGRAFIA:
http://www.disfrutalasmatematicas.com/datos/desviacion-estandar.html
https://ekuatio.com/medidas-de-dispersion-recorrido-desviacion-media-varianza-y-desviacion-tipica/
http://www.disfrutalasmatematicas.com/definiciones/rango-estadistica-.html
https://prezi.com/obxa6mstewuk/medidas-de-dispersion-para-datos-agrupados/